Pleasant Lake Summer Watershed Analysis

Colby-Sawyer College Quinn Aldrich, Samantha Carus, Steven Williamson, Nick Baer, David Lutz

Who We Are

 Quinn Aldrich – Senior Environmental Science Major, Chemistry Minor

Who We Are

• Sam Carus- Senior Environmental Science, Biology Minor

Introduction: Key Findings of Community Based • Defined seasonal dynamics of

ProjectriData 750 samples

22 sample days

- tributaries
- Identified tributaries of concern
- Highlighted importance of storm events and snowmelt

Introduction: Key Findings of Community Based Project Data

- •Defined seasonal dynamics of tributaries
- •Identified tributaries of concern
- •Highlighted importance of storm events and snowmelt

Human Development and Impervious Surfaces

Phosphorus Concentrations

State road salt application

Higher Salt Application

Higher Chloride Concentrations

Objectives of Additional Sampling

Continued Monitoring

Growing season biogeochemical

assessment Capture summer rainstorm events

Comparative Analysis

Compare tributary data with 2024 VLAP data

Compare loading across seasons

Identify factors that influence differences in concentrations

Cyanobacteria bloom at Elkin's Beach 6/19

Total Summer Sampling Effort

Additional Contributions from Summer Efforts

- Sampling/analysis at tributary headwaters
- Summer thunderstorm impact (pre/post storm)
- Focus on consistently flowing Summer sites
- E-Coli sampling @ baseflow sites (8/19)
- In-lake sediment coring @ VLAP sites (7/25)
- Same-day VLAP and tributary sampling comparison
- Headwater sampling of significant sites

Headwater Analysis:

Provided insights into phosphorus concentrations at upstream vs. regular tributary sites

Headwaters were first Identified key headwaters using GIS-based sub-watershed delineation

Samples were collected at headwaters and downstream sites for comparison for a paired analysis

Headwater Sampling: Phosphorus

Phosphorus concentrations at tributary headwaters and their corresponding routine sampling site are shown. Wilcox test significance between groups p values: ns = no significance. 0.05* 0.01** 0.001*** < 0.001****

Three sites with significantly higher phosphorus concentration at headwaters

•Stream flowing next to Winship's house (Site 4)

•White Brook (site 11)

•Little Brook (site 13)

One site with significantly lower concentrations at headwaters

•Elkins/Bunker (Site 26)

Headwater Sampling: Chloride

Chloride concentrations for tributary headwaters and their corresponding routine sampling sites are shown. Wilcox test significance between groups p values: ns = no significance. 0.05 * 0.01 ** 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** <

Two sites with significantly higher chloride concentration at Headwaters

- White Brook (Site 11)
- Little Brook (site 13)

One site with lower chloride concentrations at headwaters

• Site 26 (Elkins/Bunker)

Summary of Headwater Analysis

Concentrations were generally **higher** at headwater sites.

Site 26 Headwaters

(Esther Currier Wildlife Management Area) had **lower** concentrations than tributary samples. (Intersection of Elkins and Bunker road)

Impact of Housing Density on Phosphorus Concentrations in Sub-Watersheds

Phosphorus Concentration vs Percent Development by Subwatershed

Linear regression model of phosphorus concentration versus percent houses: Intercept: 0.0331, p-value: 0.0006, residual Standard Error: 0.05087, R-squared: 0.0445, F-statistic: 12.06

Headwater Sampling: Phosphorus

Significantly Higher Phosphorus Concentration at Headwater Site

- Stream flowing next to Winship's house (Site 4)
- White Brook (site 11)
- Little Brook (site 13)

Significantly lower concentrations at headwater

Site 26 (Elkins/Bunker)

Figure 5: Phosphorus concentrations at tributary headwaters and their corresponding routine sampling site are shown. Wilcox test significance between groups p values: ns = no significance. 0.05* 0.01** 0.001*** <<0.001****

Headwater sampling: Chloride

Higher Chloride Concentration at Headwater Site

White Brook (Site 11) Little Brook (site 13)

Lower Chloride Concentrations at Headwater Site

Site 26 (Elkins/Bunker)

Figure 4: Chloride concentrations for tributary headwaters and their corresponding routine sampling sites are shown. Wilcox test significance between groups p values: ns = no significance. 0.05* 0.01** 0.001*** <<0.001****

Little and White Brook Headwaters: Significantly higher Phosphorus and Chloride

Site 4 Headwaters: Significantly higher Phosphorus and Chloride

Fire pond and Elkins/Bunkers Headwaters had significantly lower Chloride concentrations

VLAP vs Our Sites

- June 11th
- July 9th
- August 13th

Phosphorus Concentration at VLAP vs Tributary Sample Sites

Impact of Summer Thunderstorms on Phosphorus – June 20th

Site	Before Storm	After Storm
Great Brook	30 ug/L	91 ug/L
Little Brook	13 ug/L	123 ug/L
White Brook	23 ug/L	146 ug/L
Red Brook	35 ug/L	108 ug/L
Bunker/Elkins	45 ug/L	168 ug/L
Fire Pond	83 ug/L	198 ug/L
0 4 in / 1hr!		

040

Impact of Summer Thunderstorms on Phosphorus – June 20th

	Site	Before Storm	After Storm
\bigstar	Great Brook	30 ug/L	91 ug/L
	Little Brook	13 ug/L	123 ug/L
	White Brook	23 ug/L	146 ug/L
	Red Brook	35 ug/L	108 ug/L
	Bunker/Elkins	45 ug/L	168 ug/L
	Fire Pond	83 ug/L	198 ug/L

040

Impact of Summer Thunderstorms on Phosphorus – June 20th

Site	Before Storm	After Storm
Great Brook	30 ug/L	91 ug/L
Little Brook	13 ug/L	123 ug/L
White Brook	23 ug/L	146 ug/L
Red Brook	35 ug/L	108 ug/L
Bunker/Elkins	45 ug/L	168 ug/L
Fire Pond	83 ug/L	198 ug/L
10x Higher!		

040

Impact of Summer Thunderstorms on Phosphorus – June 20th

Site	Classifications of I	_akes After Storm
Great Brook	Oligotrophic: < 8 ug/L	91 ug/L
Little Brook	Mesotrophic: < 12 ug/L	123 ug/L
White Brook	Eutrophic: < 28 ug/L	146 ug/L
Red Brook	Hypereutrophic: > 28 ug/L	108 ug/L
Bunker/Elkins		168 ug/L
Fire Pond	83 ug/L	198 ug/L
·		\mathbf{X}

Site	Grams P in Hour	Grams P in Day
Fire Pond (Pre Storm)	5.8	139.2
Fire Pond (Storm)	211.4	5074.3
Little Brook (Pre Storm)	0.032	1.92

Site	Grams P in Hour	Grams P in Day
Fire Pond (Pre Storm)	5.8	139.2
Fire Pond (Storm)	211.4	5074.3
Little Brook (Pre Storm)	0.032	1.92

Site	Grams P in Hour	Grams P in Day
Fire Pond (Pre Storm)	5.8	139.2
Fire Pond (Storm)	211.4	5074.3
Little Brook (Pre Storm)	0.032	1.92

Site	Grams P in Hour	Grams P in Day
Fire Pond (Pre Storm)	5.8	139.2
Fire Pond (Storm)	211.4	5074.3
Little Brook (Pre Storm)	0.032	1.92

A 1-hour storm brings in almost twice as much phosphorus as a day of baseflow for the Fire Pond

Site	Grams P in Hour	Grams P in Day
Fire Pond (Pre Storm)	5.8	139.2
Fire Pond (Storm)	211.4	5074.3
Little Brook (Pre Storm)	0.032	1.92

Site	Grams P in Hour	Grams P in Day
Fire Pond (Pre Storm)	5.8	139.2
Fire Pond (Storm)	211.4	5074.3
Little Brook (Pre Storm)	0.032	1.92

The Fire Pond brings in as much phosphorus during a 1-hour storm as Little Brook brings in 110 Baseflow Days

Sites to Focus Management Efforts on

Chloride Stays in the Soil Across Seasons

Chloride Stays in the Soil Across Seasons

Chloride Stays in the Soil Across Seasons

Conclusions

- Site 26 > Headwaters (Phosphorus + Chloride)
- Site 27 > Headwaters (Chloride)
- Housing cover and development -> phosphorus concentrations
- Tributary sampling different than in-lake
- Summer storm events drive phosphorus loading
- Spring flushes of phosphorus
- Chloride stays in the soils and leaches throughout the year

Potential Next Steps

- Future VLAP sampling to include tributaries
- Measuring DO beyond 25m at the deep spot
- Analysis of sediment cores
- E coli testing for septic influence
- Salt Minimization Plan
- Watershed-Based Management Plan

What Can Homeowner's Do?

- Fertilizer Use
- Winter Road Salt Use
- Septic System Maintenance
- Shoreline buffers
- Native Vegetation

LSPA Examples

Susie Burbidge

BUCKLIN BEACH PROJECT RAIN GARDEN SLOWS RUNOFF AND ALLOWS INFILTRATION OF RUNOFF AND PLANT UPTAKE OF NUTRIENTS

18.26

LSPA Examples

GRANLIDEN PROJECT SLOWED WATER AND INCORPORATED SEVERAL ELEMENTS TO ALLOW MATERIAL TO SETTLE OR INFILTRATE.

Thank You

Teriko MacConnell

Nick Baer

Dave Lutz

Terri Herman

Town of New London

Bob Harrington

Kimberly Hallquist

Cara Leon

Jim Perkins

New London Archives

Pleasant Lake Protective Association

Pleasant Lake Homeowners

Debra Perkins

NH Department of Environmental Services

Leon Malan

Doug Baxter

Lake Sunapee Protective Association

Elizabeth Harper

John Waage

Tehya Kloster

Craig Williamson

Buster Welch

Janet Kidder

Bebe Casey

Bill Helm

Doug Bent

Jen Esten

John Wilson

Mark Vernon

EXPLORE. CONNECT. MAKE A DIFFERENCE.

Appendix

Regular Site	Headwater Site
Winship House	Langenau Forest pond outlet
Little Brook	Powerlines at the top of Morgan Hill
White Brook	Messer Farm Expansion land plot (Ausborn Sargent Property)
Bunker/Elkins	Esther Currier Wildlife Management Area
Fire Pond	Outlet of Esther Currier Wildlife Management Area

Appendix